Einstein or Frankenstein???? Human gene editing trials approved in the United Stataes

Options
bambu
bambu Members Posts: 3,529 ✭✭✭✭✭
Now that a federal biosafety and bioethics committee has approved what would be the first use of the trailblazing genome-editing technology CRISPR-Cas9 in people, the obvious question arises: Could anything go wrong?


1. CRISPR edits DNA it isn’t supposed to

The experiment would alter the immune system’s T cells only after they’re removed from a patient. That gives scientists the chance to screen the CRISPR’d cells to make sure only the three intended genes, all involved in making T cells find and destroy tumor cells, are altered. But after those T cells are infused back into a patient to fight melanoma, sarcoma, or myeloma, the CRISPR system can keep editing DNA, and tracking such edits becomes like following a polar bear in a snowstorm.

2. CRISPR hits its targets, but then genetic hell breaks loose

When CRISPR’s DNA-cutting enzyme snips the genome, the severed DNA strands don’t just smoothly reconnect like an electronic document that closes up the space between “just” and “reconnect” if “smoothly” is deleted from this sentence. No. Random DNA floating around rushes into the gap.

3. The Energizer Bunny problem

The components of CRISPR usually don’t just slip into T cells on their own. That requires a virus, since viruses are adept at infiltrating cells. A spokesman for Penn said the scientists were not available to answer questions about their proposed procedure, but if they do use viruses, they run the risk that virus-infected cells will keep cranking out the DNA-snipping Cas9 — by one estimate, for 10 or 20 years. That leaves lots of time for unintended genome-editing to occur.

4. Dollars triumph over data


Study after study has shown that when clinical trials involve entities with a financial interest in the outcome, as the Parker Institute for Cancer Immunotherapy and Penn have in this one, the reported outcomes are more likely to be favorable than when the trial is sponsored by, say, the National Institutes of Health. In studies where the sponsor has a profit motive, scientists are also less likely to adhere to best practices, research has shown. “If you really believe in a [bio]technology and it’s not completely clear whether a side effect is the fault of the disease or the technology, your bias could influence how you interpret that,” said Atkins.

In 1999, members of the Recombinant DNA Advisory Committee pointed out, a young man died in a now-infamous gene therapy trial at Penn in which the lead scientist had a multimillion-dollar financial stake in the technology. That conflict of interest, scholars have argued, may have led him to make dangerous decisions. Although the Parker Institute will handle patents for any discoveries that emerge from the research it funds, “each site owns its intellectual property,” said chief legal counsel Melinda Griffith. “If you invent it, you own it.”

Or, everything could go well and CRISPR cures cancer.

https://www.statnews.com/2016/06/23/crispr-humans-penn-clinical-trial/

https://youtu.be/2pp17E4E-O8

Comments